基于卷积神经网络的场景级云分类算法

作者:于志成; 张晔; 杨秉新; 李涛
来源:沈阳师范大学学报(自然科学版), 2019, 37(01): 80-87.

摘要

遥感图像受云层覆盖的影响,使得光学卫星拍摄的遥感图像中的大量地表或地物被云层遮挡,大量下传此类云覆盖图像则严重浪费卫星对地数传资源。面向遥感图像的在轨云判应用,根据星上对不同含云量场景级遥感图像块的不同处理策略,提出一种新的云覆盖度等级场景分类准则,利用该准则进一步提出基于深度卷积网络的云图像场景分类算法,将传统图像分割算法只计算整幅图像云占比来进行云判的方式,精细到局部场景的不同级别云判,为卫星数据下传提供更精细的指示信息,更有效的利用在轨拍摄资源。通过多组实验分析,同时考虑到星上计算资源的限制,确定了合适的训练样本数量和深度卷积网络,最终证明提出的算法可以实现局部场景不同级别的精准云判。