摘要

车辆路径作为经典的组合优化问题一直是研究的热点与难点,无论是在应急管理工作还是物流配送中,对它的合理规划都至关重要.为了今后更好地开展相关工作,本文回顾了精确算法、启发式算法和机器学习算法在车辆路径优化问题中的研究进展,并基于Solomon标准数据集对六种经典算法的求解性能进行了比较分析;分别从局部最优和收敛速度间的平衡关系、个体评价函数、动态车辆路径问题以及机器学习算法在车辆路径问题中的应用等四个方面对其发展趋势进行了展望.