摘要

神经网络用于分割图像时需要大量的训练数据,由于数据量大,计算速度相当慢,不适合实时数据处理。基于此,将粗糙集理论与神经网络相结合,提出基于粗糙集的神经网络图像分割方法。利用粗糙集理论中的约简的计算方法,从图像属性中获取精简的规则,根据这些规则构造神经网络各层的神经元个数,并根据粗糙集理论中的属性重要性来修正神经网络的权值。实验结果表明,该方法抗噪能力强,提高了精度,在大大缩短网络训练时间的同时改善了分割效果,满足图像处理的实时性要求。

  • 单位
    湖南现代物流职业技术学院