摘要

本文应用锥上的不动点定理研究了三阶四点边值问题{u’’’(t)+f(t,u(t))=0,t∈[0,1],u′(0)=αu(ξ),u′(1)+βu(η)=0,u″(0)=0正解的存在性,其中α和β是正的参数,0≤ξ≤η≤1.在f满足适当的增长条件下,本文通过对核函数的上下界估计获得了该问题正解的存在性.