摘要
为了解决编码器-解码器网络结构在目标提取中抑制无关语义、跨越语义鸿沟等问题,以获取更高精度,采用UNet作为提取特征的主干网络;为了减轻浅层特征与深层特征语义的差异,设计一种融合注意力感知的多尺度语义池化模块(Channel-Spatial-Pyramid, CSP),替代早期层中的跳跃链接。CSP模块从空间与通道两个层面强调更有意义的语义信息,通过4个不同池化核的并行分支提取不同尺度特征,聚合所有分支结果与后期层特征拼接。实验结果表明,CSP-Net在彩色眼底图像视盘分割中的Dice指数可达99.6%,视杯分割结果的Dice指数为92.1%,相比现有算法均有提高。所提出的CSP-Net对于眼底图像中的微小目标提取的有效性及抗干扰性较高,可为青光眼筛查与诊断临床提借鉴。
- 单位