颞骨CT内面神经、迷路、听骨结构深度学习的自动化分割方法

作者:柯嘉; 吕弈; 杜雅丽; 王君臣; 王江; 孙世龙; 马芙蓉*
来源:解剖学报, 2020, 51(05): 653-658.
DOI:10.16098/j.issn.0529-1356.2020.05.003

摘要

目的探讨神经网络的深度学习方法,进行颞骨CT内面神经、迷路及听骨结构的自动化分割的可行性和精确性。方法选择常规颞骨CT检查患者的数据,随机分为两组,一组为训练集(20例),另一组为测试集(5例)。在上述颞骨CT中采用手工分割的方法,分割出迷路、听骨及面神经结构。选择三维卷积神经网络3D U-Net作为深度学习中的神经网络结构部分,通过对训练集的训练,得到该网络的平均精度。用该网络模型对5组测试集中的不同解剖标志自动分割的结果与手工分割的结果进行测试,分别获得面神经、迷路及听小骨的测试精度。并将上述精度与另一种基于三维卷积神经网络结构的V-Net网络模型获得的精度进行比较。结果在颞骨CT标本中,采用面神经、迷路及听小骨分别对3D U-Net-plus和V-Net网络结构的自动分割进行训练,在训练样本中,3D U-Net-plus网络结构的平均误差为0.016,V-Net网络结构的平均误差为0.035,两者差异有统计学意义(P<0.05);利用3D U-Net-plus神经网络自动分割的迷路、听小骨及面神经与手工分割图像的Dice相似指数分别为0.618±0.107、0.584±0.089和0.313±0.069,利用V-Net神经网络自动分割的迷路、听小骨、面神经与手工分割图像的Dice相似指数分别为0.322±0.089、0.176±0.100和0.128±0.077,两者差异有统计学意义(P<0.001)。结论采用3D U-Net-plus神经网络,在颞骨内听骨、迷路及面神经的自动识别和分割方面具有可行性,该方法优于V-Net神经网络。随着网络结构的优化和学习样本的扩大,其将更加接近人工分割的效果。

全文