为了减弱固定的先验噪声模型对扩展卡尔曼滤波器(EKF)状态估计的影响,提出一种基于粒子群优化的感应电机模糊EKF(PFEKF)转速估计方法。通过将粒子群优化(PSO)算法引入模糊控制器,监视实际残差与理论残差的偏离程度,自适应选择模糊调整因子,在线递推修正测量噪声协方差矩阵的加权值,使其逐渐逼近真实噪声水平,从而使滤波器进行优化估计,并减小外部干扰和时变测量噪声对系统性能的影响。仿真和实验结果验证了基于PSO的感应电机模糊EKF转速估计方法的正确性与有效性。