摘要
为了快速识别出供热管道泄漏故障,以管道泄漏时产生的负压波特征,研究提出了利用卷积神经网络(CNN)识别压力数据的管道漏损诊断方法。通过搭建供热管道实验平台,采集了正常、泄漏、调阀三种工况下的压力数据作为卷积神经网络的训练集和测试集。对原始数据进行小波降噪处理,应用硬阈值的处理方法有效消除了噪声信号,同时在调阀工况中出现了强化特征,增强了卷积神经网络的分类能力。针对一维数据特征采用改进的AlexNet卷积网络模型对采集的数据进行学习及识别。结果发现,在对实验室数据测试中,CNN模型的平均识别正确率达98.39%。在对实际管网的验证中,三个热力站的泄漏数据均被正确识别,表明CNN模型具备良好的故障诊断能力。
-
单位土木工程学院; 内蒙古工业大学