摘要
针对现有煤矿井下带式输送机上煤块检测方法存在检测精度低、检测速度慢等问题,提出了一种融合轻量级网络和双重注意力机制的改进YOLOv4模型,并将其应用于带式输送机煤块检测。改进YOLOv4模型采用K-means聚类算法重新聚类先验框,使先验框更适应检测目标尺寸;通过引入MobileNet轻量级网络模型改进主干网络结构,以减少模型的参数量和计算量,提高检测速度;嵌入具有双重注意力机制的卷积块注意模块,用于提高模型对目标特征的敏感度,抑制干扰信息,提高目标检测精度。实验结果表明,改进YOLOv4模型能准确检测出不同尺寸的煤块;相较于YOLOv4模型,改进YOLOv4模型权重文件减少了36.46%,精确率提高了2.16%,召回率提高了20.4%,平均精度均值提高了14.37%,漏检率降低了16%,检测速度提升了19帧/s,处理单张图像耗时减少了1.31 s,提高了煤块检测精度和检测速度。
- 单位