摘要
针对胶质瘤在结构上的多样性给分割带来的不精确等问题,提出一种应用对抗网络的胶质瘤MR图像分割方法,使用改进的U-Net网络作为生成器的基础架构,获得逐像素的分割结果,判别器是一个卷积神经网络结构.利用对抗机制优化生成器与判别器,直到两者同时收敛为止.训练好的生成器即可完成胶质瘤MRI分割.实验结果表明:提出的方法相比于传统U-net方法,Dice系数提高了4.42%,提高了分割的准确度.
-
单位生物医学工程学院; 中南民族大学