摘要

以曲靖市云南松林为研究对象,基于2016年曲靖市二类调查数据以及同时期Landsat 8OLI遥感影像,利用随机选取的小班样地提取遥感因子统计值建立数据集,基于不同曲线拟合定量研究曲靖市云南松林生物量估测的光饱和值;并以线性逐步回归模型为基本模型,考虑区域和龄组随机效应建立云南松林生物量遥感估测模型,以期减小生物量遥感估测中光饱和引起的估测误差。结果表明:利用三次模型拟合研究区云南松生物量饱和值为167 t/ha;不同效应水平的混合模型的拟合精度均优于一般逐步回归模型。在独立性样本检验中混合效应模型的预估精度(91.556%)要高于一般逐步回归模型的预估精度(83.826%);从生物量分段残差检验结果与研究区生物量反演结果上看,混合效应模型相较于一般逐步回归模型有着更大的估测范围,在一定程度上能够解决高值低估和低值高估问题,减小光学遥感影像数据存在数据饱和的影响。