摘要
云计算平台的诞生,推动了推荐系统的发展。传统社会网络并行算法在大数据处理方面存在不足,利用签到记录时,不能充分利用签到信息所隐含的偏好、位置和社交网络信息,从而造成准确率低的问题。基于此,提出了基于云计算的社交网络并行推荐算法,Debogone算法设计。通过特征提取算法实现Debogone算法设计,以用户历史偏好为基础,综合考虑用户社交关系,以用户的活动范围为约束点,实现用户兴趣点的推荐。通过实验对比,证明了Debog one算法设计准确率高,稳定性高,具有推广意义。
- 单位
云计算平台的诞生,推动了推荐系统的发展。传统社会网络并行算法在大数据处理方面存在不足,利用签到记录时,不能充分利用签到信息所隐含的偏好、位置和社交网络信息,从而造成准确率低的问题。基于此,提出了基于云计算的社交网络并行推荐算法,Debogone算法设计。通过特征提取算法实现Debogone算法设计,以用户历史偏好为基础,综合考虑用户社交关系,以用户的活动范围为约束点,实现用户兴趣点的推荐。通过实验对比,证明了Debog one算法设计准确率高,稳定性高,具有推广意义。