摘要

风险社会背景下随着信息网络的广泛运用,算法成为了连通风险社会和数据的重要防控节点。一方面算法作为工具被广泛运用于风险的预测与防控,另一方面因为算法程序客观性、智能性以及可解释性的不足,算法本身也成为了风险源头的一部分,并贯穿始终。尤其在法律领域,算法在缓解司法压力的同时,更滋生出如算法损害、技术黑箱、算法权力操纵与算法歧视等多重问题。对此,如何科学地选择锚点和基础算法来设计搭建算法模型,通过数据训练并成功运用到实务操作,在规避减弱风险的同时满足任务需求,消减算法伤害,最终达到风险预警与防控,便是算法研究的关键问题。