针对图像分块之间的相互依赖关系,提出一种基于二维隐马尔可夫模型的图像分类算 法。该算法将一维隐马尔可夫模型扩展成二维隐马尔可夫模型,模型中相邻的图像分块在平面两个 方向上按条件转移概率进行状态转换,反应出两个维上的依赖关系。隐马尔可夫模型参数通过期望 最大化算法(EM)来估计。同时,本文利用二维Viterbi算法,在训练隐马尔可夫模型的基础上,实现 对图像进行最优分类。文件图像分割的应用表明,隐马尔可夫算法优于CART算法。