摘要
为精准识别生菜的病害类型及所处病害时期,提出了一种结合高光谱技术和图像特征提取技术融合的生菜病害诊断方法。利用高光谱套件分别采集炭疽病、菌核病、白粉病的发病早期、中期和晚期以及健康状态下生菜叶片样本的高光谱信息,利用多项式平滑(Savitzky-Golay,SG)算法对原始光谱数据进行降噪平滑处理,采用连续投影算法(Successive projections algorithm,SPA)对预处理后的数据进行特征波长的优选,使用一阶到三阶矩和纹理LBP算子分别提取样本图像的颜色特征和纹理特征,最后通过SVR预测模型对颜色、纹理及光谱特征值数据进行训练并对预测集样本进行分类研究。结果表明,基于高光谱和图像融合特征的SVR预测模型性能良好,预测集决定系数为0.895 6,均方根误差为3. 75%。由于决定系数不够理想,通过引入松弛变量的方式降低间隔阈值,最终模型预测集决定系数为0.928 6,均方根误差为0. 034 2,决定系数提高了3. 68%,均方根误差降低了8. 8%,病害时期判断准确率为92. 23%。说明该方法能够较有效地诊断生菜的病害类型及所处病害时期,可为农业精准化管理中病害的自动防治提供参考。
- 单位