摘要
卷积神经网络(CNN)是目前计算机视觉和模式识别中效果最为突出的算法。CNN拥有强大的空间识别能力,可以从图像中提取高阶的空间特征,同时通过共用卷积核的方式大幅减少参数量,从而在提升网络性能的同时保持总参数量在一个合理的、可运算的范畴。部分采用无监督学习的CNN算法可以在没有先验知识的条件下实现一定程度的图像语义分割,大幅减少人工读图的负担。本研究就CNN在医学图像分割中的研究进展和使用CNN时的具体技巧及其效果进行综述。以使用CNN为核心的深度学习工具解决医学图像分割的课题为中心,展示了CNN在有监督学习、半监督学习及无监督学习中的巨大潜力,分析比较了现有方案的优点与不足,探讨了未来CNN在医学图像领域的前进方向。
-
单位上海交通大学医学院附属仁济医院; 上海理工大学