PATB:一种面向联合实体和关系抽取的信息聚合器

作者:张亮; 卢玲*; 王爱娟; 杨武
来源:小型微型计算机系统, 2023, 44(10): 2338-2345.
DOI:10.20009/j.cnki.21-1106/tp.2022-0045

摘要

现有实体关系联合抽取方法中,主体抽取与客体和关系抽取任务的交互不足或方法单一,对关系三元组内部潜在的位置及上下文语义关系利用不足.为此,提出了一种融合实体位置及上下文注意力的信息聚合器(Position and Attention based Booster, PATB)用于级联式实体关系联合抽取.首先抽取主体,再融合主体位置更新主体的表示,融合主体与上下文的注意力更新文本的表示,将更新的主体及文本表示进一步用于客体及关系抽取.模型在公共数据集NYT和WebNLG上的F1值分别为90.9%、92.5%,较基线模型分别提升1.3%和0.7%;在3种不同关系模式的测试数据Normal、EPO及SEO中,NYT上的F1值分别为88.9%、93.2%和92.6%,均优于基线模型;在含1~5个三元组的对比实验中的F1值也均优于基线模型,表明融合位置及上下文语义的PATB不仅可提升三元组抽取性能,且能在有复杂重叠关系、多个三元组情况下保持稳定的提取性能.

全文