摘要

针对电力负荷历史数据中异常数据点影响电力负荷预测精度的缺陷,研究基于电力负荷历史数据挖掘的负荷预测算法。选取K-means聚类算法挖掘电力负荷历史数据的属性特征量,检测其中所包含的异常数据点,选取灰色系统理论中的GM(1,1)模型修正电力负荷历史数据中的异常数据,利用完成修正的电力负荷历史数据建立训练集以及预测集,将训练集样本输入支持向量机中,利用支持向量机所具有的非线性映射能力映射样本至高维空间内,获取支持向量机最优阈值,将预测集输入具有最优阈值的支持向量机中,获取精准的电力负荷预测结果。所研究算法可实现长期、短期、超短期电力负荷的预测,且预测的精准性及速度较为优越。