摘要
针对肺结节计算机辅助检测(CAD)系统中肺结节形态各异难以检测带来的敏感度低、假阳性率高的问题,提出一种基于注意力特征金字塔网络的肺结节检测算法。在第一阶段,以更加紧凑的双路径网络(DPN)为骨干网络,并结合特征金字塔网络(FPN)进行多尺度预测,以获取不同层次的特征信息,同时嵌入全局注意力机制(GAM)来细化学习要强调的语义特征,并提高算法的敏感度;在第二阶段,提出一种假阳性抑制网络,以获得最终分类预测结果;在训练阶段,采用焦点损失函数和多种数据增强技术来处理数据不平衡问题。在公开数据集LUNA16(LUng Nodule Analysis 2016)上的实验结果显示:仅有第一阶段的算法的竞争性能指标(CPM)达到了0.908,而加入假阳性抑制网络后算法的CPM达到了0.933,这与经典算法基于最大强度投影(MIP)的卷积神经网络(CNN)算法相比提升了1.1个百分点;而消融实验的结果表明DPN、FPN、GAM对于提升检测敏感度是有作用的。以上证明了所提出的两阶段检测算法可以获取多尺度结节信息,提高肺结节检测的敏感度,并且降低假阳性率。
-
单位武汉科技大学; 智能信息处理与实时工业系统湖北省重点实验室