摘要
社区结构发现研究可揭示复杂网络中隐藏中观结构,为进一步开展网络的形成和演化研究应用提供依据,如可为智能推荐、舆情控制、电力和交通网络调度等方面提供决策支持数据。针对复杂网络社区结构挖掘中社区数量难以确定的问题,提出一种基于密度自适应聚类数的社区发现谱方法。引入谱图分析中比较成熟的谱聚类特征向量分析方法,基于局部节点密度构图,结合网络图的边介数值构造相似矩阵,规范化后进行谱聚类,求得最大特征维度k值,k值即为社区个数。最后采用k-means方法对特征向量空间进行聚类,使得复杂网络社区得以呈现。在人工UCI和真实数据集(southern women data)上的实验表明,与现有谱聚类社区发现算法相比,该方法能自动确定社区个数,能得到划分精度更高的社区。
- 单位