摘要

实例分割对排除建筑工地不规则机械设备带来的安全隐患以及监测工人具有重要意义。然而当前主流的实例分割模型存在着边界检测精度不高的问题。结合实例分割的特点,提出了一种基于全局上下文通道注意力(GCCA)机制多阶段细化掩码的改进Mask R-CNN模型。首先,在Mask头部以多阶段的方式逐步融合细粒度特征,细化高质量掩码。其次,为了更好的融合细粒度特征,构建了GCCA注意力机制,其通过简化的全局上下文模块聚合全局特征,并利用一维卷积实现无降维的局部通道交互。实验结果表明,在COCO和MOCS数据集上均取得了较好的效果。其中,相较于Mask R-CNN模型,此算法在检测和分割的平均精度分别提高了2.4%和7.6%。

全文