摘要

针对标准粒子滤波过程的权值退化和样本贫化问题,该文结合融入围猎策略的哈里斯鹰优化算法设计一种群智能优化粒子滤波方法(EHHOPF)。首先,引入围猎策略替代哈里斯鹰优化算法全局搜索策略以适配粒子滤波环境;其次,采用Sigmoid函数构建非线性猎物逃逸能量平衡算法的探索阶段和开发阶段;最后构建选择比例因子融合开发阶段捕猎策略并采用非线性猎物跳跃强度保证算法收敛效率。仿真结果表明,与标准粒子滤波以及磷虾算法、蝙蝠算法、布谷鸟算法、灰狼算法优化的粒子滤波方法相比,基于围猎改进哈里斯鹰优化的粒子滤波方法有效提升了系统状态估计精度、滤波稳定性和滤波实时性。