基于无人机多光谱影像的春玉米田管理分区研究

作者:卢闯; 胡海棠; 覃苑; 淮贺举; 李存军*
来源:中国农业科技导报, 2022, 24(09): 106-115.
DOI:10.13304/j.nykjdb.2021.0618

摘要

为了提高大尺度农田管理的针对性,探寻低成本高效的分区方法,以黑龙江省典型黑土区30.8 hm2春玉米田为对象进行分区研究。基于吐丝期无人机多光谱影像,使用多尺度分割与模糊聚类相结合的方法进行分区,同时基于播种前的土壤养分(土壤有机质、速效氮磷钾)、土壤体积含水率、电导率、pH进行模糊聚类分区并作为对照,对分区间春玉米产量和土壤养分进行方差分析,并对分区内变异系数进行比较以评价分区效果。结果表明,基于无人机影像得到4个较优管理分区为M1、M2、M3、M4,各分区产量分别为7 597.53、8 236.35、8 686.98、9 119.93 kg·hm-2,各分区间产量差异显著,其中M1、M2、M3间土壤养分差异显著(P<0.05),分区内作物产量和土壤养分的变异系数降低;基于土壤数据确定4个分区,即S1、S2、S3、S4,春玉米产量分别为7 754.81、8 173.44、8 860.05、9 153.23 kg·hm-2,分区间土壤养分、土壤水分差异显著(P<0.05),分区内部土壤均一性提高。综合来看,2种方法的划分结果在空间分布上具有一定的相似性,同级分区的空间重合度分别为40.00%、46.51%、57.45%、59.38%,整体重合度为51.32%。当缺乏土壤数据时,无人机多光谱影像可为农田管理分区提供参考依据。

全文