摘要

战场态势瞬息万变,利用可见光图像对敌方用于军事行动的飞机类型进行有效区分,对提供军事作战信息具有重要意义。针对现有军用飞机识别方法存在小目标飞机和环境背景复杂导致的模型特征提取困难、数据样本数量不足导致的模型训练不充分的问题,提出一种坐标通道注意力深度学习网络(ConvNeXt-Coordinate Attention,ConvNeXt-CA)军用飞机目标识别方法。该方法在ConvNeXt网络可以保留小目标飞机特征的基础上,引入CA机制设计CA-Stage模块,提升网络对于背景和前景的区分能力;采用数据增强的方式扩充数据集,以及使用迁移学习的策略提高模型的泛化能力,训练得到具备最优超参数的ConvNeXt-CA网络。结果实验表明,与传统的军用飞机识别方法和其他深度学习模型相比,基于迁移学习的ConvNeXt-CA网络在预测的准确率上有明显的提升,且具备较强的泛化能力。