摘要
【目的】将多种分类器的优点融合,以便提升遥感影像作物信息提取的精度。【方法】以渭库绿洲为研究区,利用国产高分2号(GF-2)数据和野外调查数据,基于提取的遥感识别特征制定不同分类方案,采用马氏距离(MsDC)、最小距离(MDC)、最大似然(MLC)、神经网络(NNC)、支持向量机(SVM)5种传统机器学习方法分别对6种特征组合方案的影像进行分类,然后选择基分类器,并应用多数投票法和保守投票法2种多分类器集成算法,对研究区农作物进行精细分类提取。【结果】(1)辅助特征的加入对于子分类器的精度提高明显。5种分类器中除了MLC,其余4种分类器都是在加入归一化植被指数特征(NDVI)和纹理特征后取得了最高精度。(2)基分类器中精度最高的是NNC-4(人工神经网络的第4种特征组合方案),OA达到83.54%,Kappa系数为0.77。(3)相比基分类器,多分类器集成方法能够在制图精度和用户精度两方面提高农作物的提取精度。并且保守投票法优于多数投票法,OA为85.89%,Kappa系数为0.80。(4)集成分类结果中除了棉花的识别精度与最优基分类器NNC-4相等,达到94.94%外,其他的农作物如套种棉花、玉米、套种玉米、核桃园的识别精度都高于NNC-4,其中套种玉米与核桃园的提取效果较好,精度分别达到86.05%、79.09%;对于套种棉花的提取较差,只有63.86%;玉米的提取最差,只有12.17%。【结论】本文应用GF-2数据,基于多分类器集成方法对复杂背景下的多种作物及种植结构进行精细提取研究,拓展了作物信息提取的方向和GF-2数据的应用领域。
- 单位