摘要

提高光伏发电功率预测结果的精度对电网规划和调度具有重要意义。基于前向神经网络或回归分析法的传统预测模型因缺乏历史记忆能力而导致自身鲁棒性较差、适应能力较弱。为了解决上述问题,文章提出了一种基于LSTM网络的光伏发电功率短期预测方法。在预处理过程中,文章先将天气类型依据日照晴朗指数量化为具体数值;然后,利用主成分分析法将与光伏发电功率相关性较高的多元数据序列进行降维,得到主成分数据序列;最后,建立基于LSTM网络的光伏发电功率短期预测模型,并将该模型的预测结果与BP网络预测模型和RNN网络预测模型的预测结果进行对比。模拟结果表明,基于LSTM网络的光伏发电功率短期预测模型能较好地反映时序数据的动态特性,预测精度较高,预测结果能够为电力调度部门提供可靠的数据支持。

全文