摘要
在电力市场改革与智能电网建设的大背景下,电力将逐渐回归商品属性,电价也将实时波动,并对负荷产生影响。通过分析得出电价与负荷具有相关性,因此在预测模型中考虑了实时电价的影响,并对考虑实时电价的负荷预测模型与价格型需求侧响应之间的关系进行了讨论。针对前馈型神经网络不能处理序列间关联信息与传统循环神经网络无法记忆久远关键信息的缺陷,提出了基于长短期记忆循环神经网络的负荷预测模型,使用自适应矩估计算法进行深度学习。最后通过美国某地区的实际负荷和电价数据,验证了所提模型具有更高的预测精度。
-
单位电子工程学院; 华北电力大学; 国网北京市电力公司