摘要
此处提出了基于Transformer的荷电状态(SOC)预测模型以提高对锂离子电池的SOC预测精度及效率。首先将易于测量的电压电流等数据作为编码器的输入,利用编码器端的多头注意力机制来提取深层特征,充分地利用输入数据的特征信息,同时将目标SOC作为解码器端的输入,将编码器的输出输入至解码器端,最后输出时移后的SOC得到预测结果。为了防止标签泄露,在解码器端的输入采用了掩码机制,同时实现了卷积神经网络提取特征和循环神经网络利用数据变化的时序性。利用锂电池的工况放电实验数据进行训练,以均方误差(MSE)作为评价标准。实验结果表明,所提出的基于Transformer模型具有较高的预测精度。
- 单位