研究一种可有效促进城市轨道交通行车组织管理效能的模糊神经网络算法。利用超限学习机模块对站点客流量进行初步卷积,使用卷积神经网络将考察线路内的各站点客流量数据进行汇总,同时构建其他线路的参照数据,使用二值化模块形成放行信号灯建议数据。应用该系统后,客流峰值车辆满载率显著下降,客流估值车辆满载率显著提升,客流估值发车间隙显著增加但并未影响到旅客的站内滞留时间。表明该算法可以有效提升城市轨道交通的运行效率和经济效益。