摘要

超级电容荷电状态(SOC)的准确估计,直接决定了电动汽车的起动、爬升和加速性能,是电动汽车混合储能系统最重要的任务之一。为此,本文中提出了一种基于模糊熵加权融合的超级电容SOC估计方法。首先,利用粒子群算法辨识了-10、10、25和40℃下的戴维南模型参数,并且采用最近邻点法建立了其与温度之间的映射关系。然后,利用模糊熵设计了基于3种典型卡尔曼滤波的SOC加权融合估计方法。最后,选择自适应加权平均以及残差归一化加权融合的SOC估计方法用于进一步评估该方法的性能表征。结果表明,基于模糊熵加权融合的超级电容SOC估计方法能够提高超级电容SOC估计精度,尤其在高温环境(40℃)下提升效果更为显著。

全文