摘要

实际工业过程中的观测样本大多会受到随机噪声的污染,因此带有噪声假设的概率模型得到广泛应用。传统方法直接对模型的因子进行监控,但由于建模所得因子中可能包含质量无关的信息,因此会增加质量相关故障的误报率,这对主要关心产品质量的生产过程是无益的。同时,针对实际过程与质量样本采样率不同导致的难以精确建模的问题,提出一种半监督正交因子分析(semi-supervised orthogonal factor analysis, Semi-SOFA)方法,建立概率模型,并对因子进行质量相关的正交分解,分别构造T2统计量;根据新样本是否含质量标签的数据性质计算相应的SPE统计量。提出的Semi-SOFA可有效检测出发生的故障是否影响质量,最后通过数值例子和Tennessee Eastman(TE)过程仿真验证了所提方法的有效性。