摘要

提出一种启发式方法,通过随机有限集理论优化数据关联跟踪算法的后验密度。具体而言,提出一种改进的联合概率数据关联滤波方法,即最近邻集合联合概率数据关联方法(NNSJPDA)。为提高边缘化的准确性,利用一种基于Kullback-Leibler散度的最近邻方法,对所有可能的数据关联事件中的目标标签进行转换。此外,进一步考虑目标标签向量的分布。后验密度转换后,可得到目标标签向量的转移矩阵。该转移矩阵随时间变化,使得目标标签向量分布的传播遵循非齐次马尔可夫链。证明了该链本质上是双随机的,并推导了相应定理。通过举例和仿真,验证了所提方法的有效性。本文结果可推广到相同随机有限集框架下的其他数据关联方法。