高斯过程回归是锂离子电池剩余使用寿命的有效预测方法之一,其中核函数的选择对预测结果有着重要影响。对此,提出了一种自回归核自构建高斯过程回归的锂离子电池剩余寿命预测框架,可结合同型号电池的历史容量退化规律,自动构建出合适的组合核函数。通过与不同的机器学习方法及不同核函数比较,所提方法可在电池退化早期做出长期且准确的电池健康状态退化趋势预测,预测寿命均方根误差小于1%,相对误差小于6%,置信区间也更为集中,证明了所提方法能够有效提高电池剩余使用寿命的长期预测精度。