摘要
在网络状态和任务需求的动态变化下,为减少模型推理时延和计算成本,在软件定义网络(Software Defined Network, SDN)中提出了一种基于模型划分的云边协同推理算法。通过构建复杂度预测器分配任务执行环境,采用深度Q网络(Deep Q-network, DQN)算法对边缘环境中的推理模型进行自适应划分与卸载;以及用SDN技术从全局感知推理任务与网络资源,实现动态网络环境下网络资源的合理分配。试验结果表明:SDN中基于模型划分的云边协同推理算法具有良好的收敛能力,在动态环境中具有较好的鲁棒性。与现有的推理算法相比,该算法能够在合理分配计算资源的前提下,满足协同推理低时延的目标要求。
- 单位