摘要
利用脉冲形状甄别(PSD)法区分中子和γ射线脉冲信号是核探测过程中一项重要的任务。本文基于Labview平台实现了n/γ脉冲信号的仿真及信号预处理过程,分别利用传统的甄别方法电荷比较法、脉冲梯度分析(PGA)法及上升时间法对所产生的n/γ脉冲信号进行甄别,筛选出以上3种甄别方法结果一致的中子和γ射线混合脉冲信号作为KNN分类算法的训练集。通过训练样本构建KNN分类模型,使得能够通过该模型实现中子和γ射线脉冲信号的分类。结果表明,基于KNN分类算法的中子和γ射线脉冲信号甄别准确率高达99.58%,与电荷比较法,上升时间法和PGA方法相比,甄别错误率显著降低。并且KNN分类算法原理简单,易于实现,因此可应用于实际混合场中的n-γ脉冲甄别。
- 单位