摘要

海面高度异常是反映海洋环境状况的主要变量之一。本文使用1993—2019年的融合月均海面高度异常数据,建立了基于深度学习的海面高度异常预测神经网络模型,提出了基于融合U型网络(U-Net)和卷积长短记忆网络(ConvLSTM)的中长期海面高度异常预报模型。在研究海域0.25°×0.25°的空间分辨率下,模型测试集预报结果的均方根误差和平均绝对误差分别为0.039 m和0.027 m,均优于全连接LSTM预报模型和ConvLSTM+CNN预报模型,为大中尺度的海面高度异常预报提供了新的方法。