摘要

基于图学习的多视图聚类算法由于其简单高效的特点,近年来受到了广泛关注。现有的多视图聚类算法大多只考虑每个视图的一致性,忽略了不同视图间的多样性,而且这些方法直接从原始数据点学习相似图,不能显示出清晰的聚类结构和准确提取数据集底层信息。为了解决上述问题,提出通过多样性诱导和正交非负图重构的多视图聚类算法。首先在统一的框架内充分利用多视图的一致性和多样性,使得一致部分结合自适应权重融合到目标图中产生更加合理的聚类结构。然后集成谱聚类和非负矩阵分解来获取结构更加清晰的聚类目标图。最后,将非负矩阵分解的一个因子矩阵约束为正交指示矩阵,从而直接得到聚类结果。该算法根据每个视图的聚类能力自动分配合适的视图权重。此外,为了联合求解优化问题,引入交替迭代策略来优化聚类算法的目标函数。实验结果表明该算法可以有效提高聚类准确率,在数据集HW2,100leaves,Mfeat上的准确率分别达到了99.21%,89.56%,87.85%,与次优模型相比分别提高了0.81%,5.12%,3.75%。理论分析和实验研究证明了本文算法的有效性和优良性能。