摘要
针对传统行为识别技术实时性、鲁棒性较差等问题,提出了一种高效鲁棒性的人体行为识别算法。通过基于Meanshift和Kalman滤波相结合的跟踪算法来跟踪定位人体目标;利用肢体特征和区域特征来提取运动特征;利用基于OAA的支持向量机分类识别。仿真实验表明,该算法实时性好、鲁棒性高,能有效应用于监控系统中。
- 单位
针对传统行为识别技术实时性、鲁棒性较差等问题,提出了一种高效鲁棒性的人体行为识别算法。通过基于Meanshift和Kalman滤波相结合的跟踪算法来跟踪定位人体目标;利用肢体特征和区域特征来提取运动特征;利用基于OAA的支持向量机分类识别。仿真实验表明,该算法实时性好、鲁棒性高,能有效应用于监控系统中。