模糊机会约束规划是一类重要的模糊规划,它广泛地存在于许多领域中,微粒群算法已实现了对其的有效求解,但求解速度仍不能满足大规模模糊机会约束规划问题的求解,为了寻找更为高效的求解模糊机会约束规划的算法,通过采用模糊模拟产生样本训练BP网络以逼近模糊函数,然后应用微粒群算法并以逼近模糊函数的神经网络作为适应值估计及检验解的可行性,从而提出了一种求解模糊机会约束规划的混合智能算法。最后通过仿真结果说明了算法的正确性和有效性。