摘要

城市交通状态识别是智能交通控制、诱导和协同系统的基础。为提高支持向量机(support vector machine,SVM)在城市交通状态识别研究方面的泛化能力,将遗传算法(genetic algorithm,GA)与支持向量机相结合,利用遗传算法全局搜索优势对支持向量机的关键参数——惩罚系数C和核函数参数σ进行优化,建立基于遗传算法优化支持向量机(GA-SVM)的城市交通状态识别模型,并在MATLAB平台下进行实例验证。研究结果表明:相较于SVM模型,GA-SVM模型克服了依靠经验确定参数方法的缺点,识别精度提高3.75%,即模型可更好地识别城市交通状态。