摘要
在过去的几十年里,人们越来越关注环境污染问题.柴油中的硫化物燃烧后可转化为SOx,对环境造成严重污染.因此,为了满足严格的国家标准要求,生产硫化物含量极低的燃料油是一个巨大挑战.氧化脱硫(ODS)体系是用于深度脱硫的加氢脱硫(HDS)体系的替代或补充,包括硫化物的氧化和氧化产物的分离.它是处理芳香硫化合物及其衍生物最有效的方法之一,引起了人们的极大关注.在我们之前的工作中报道了Co聚阴离子催化剂和对甲苯磺酸基低共熔剂(DESs)通过仿生方法将柴油中的硫化物氧化为相应的硫化物.尽管已经取得了很大的进展, DESs仿生体系仍然有很大的发展空间.例如,多金属氧酸盐(POMs)在生物模拟体系中的作用没有得到明确阐述.更困难的是构建DES的物理化学性质与仿生体系氧化脱硫效率之间的关系.因此,解决上述问题是催化氧化脱硫(AODS)仿生过程中最关键的挑战之一,迫切需要进一步研究.本文采用仿生方法研究了一种新型高效的AODS体系,该体系能显著提高ODS的效率.采用重结晶法制备了安德森型催化剂Na3Fe(OH)6Mo6O18,并将其应用于柴油AODS体系.通过分析紫外-可见光谱(UV-Vis)、红外光谱(FT-IR)以及气质联用光谱(GC-MS),我们推测了通过多步电子转移AODS体系的仿生机理.首先, POM和氧气形成过氧聚阴离子,然后与苯磺酸形成苯基过氧磺酸.由于过氧磺酸盐对富电子的硫原子具有很高的选择性,所以它优先攻击硫原子.因此,二苯并噻吩被氧化成二苯并噻吩砜.还原后的苯磺酸和POM被氧气氧化,形成新的催化循环.这些结果表明,耦合氧化还原体系和ETMs通过低能量途径将电子从苯磺酸基DES转移到氧化剂,从而促进了反应过程.最终,二苯并噻吩易被氧化为二苯并噻吩砜.DES的物理性质表明,在60°C时, n(PEG2000)/n(BSA)=2.5体系中DES粘度最大,推测可能是氢键较强所致.此外,PEG2000/2.5BSA体系脱硫效果也是最好的.这一结果表明,脱硫体系的活性与氢键的强度有关.将该仿生策略应用于模型柴油的AODS中,在60 min内二苯并噻吩脱除率达到95%,表现出前所未有的性能,并且该仿生体系也可以成功应用于真实柴油的氧化脱硫.该催化剂可重复使用五次,且反应活性无明显降低,表明该催化体系具有商业应用潜力.
-
单位烟台大学; 土木工程学院; 化学化工学院