摘要

针对现有指纹定位技术存在指纹数据量较大、存储与处理困难、复杂空间定位适应性不足等问题,提出了一种基于大规模多输入多输出(Multiple-Input Multiple-Output, MIMO)系统的三维室内空间指纹定位方法。首先,提出一种处理速度更快、存储需求更小的角度-时延信道频率功率(Angle Delay Channel Frequency Power, ADCFP)指纹矩阵;其次,引入新的相似度准则即卡方距离以提高定位精度;然后提出一种改进的次方加权K近邻(Weighted K-Nearest Neighbor, WKNN)匹配算法,根据不同次方值对权重下降速度的影响差异,针对指纹相似度的大小分配以不同的权重;最后,对ADCFP指纹采用按行按列压缩的存储方法得到三种压缩指纹,进一步减少指纹数据量,并引入中心到达角(Central Angle of Arrival, CAOA)聚类算法缩短定位时长。仿真结果表明,ADCFP指纹矩阵2 m精度可靠性可达89.2%,采用卡方距离相较于曼哈顿距离的平均定位误差降低了5.63%,改进次方WKNN算法相较于传统WKNN算法平均定位误差降低了4.45%,引入CAOA聚类算法可使定位速度提升为未聚类情况下的1.72倍,平均定位误差较K均值聚类算法降低了44.05%,定位性能有较大提升。

全文