摘要

迭代自组织数据分析算法(ISODATA)是一种基于统计模式识别的非监督学习动态聚类算法。针对当前各算法初始聚类数取值困难、容易陷入局部最优等问题,介绍了ISODATA的原理和实现步骤,并将此算法应用于负荷分类中。在MATLAB中结合具体日负荷曲线样本进行聚类分析,结果证明聚类效果较好。将ISODATA与各种传统聚类方法进行了对比实验,比较各种算法的聚类效果、预定聚类数目对算法结果的影响,以及初始聚类中心的选择对结果的影响。对比结果证明,此方法适用于负荷分类的研究。