联邦学习由于其分布式、隐私保护等特点有望应用到车联网中,然而由于缺少相应的本地模型质量验证机制,全局模型容易受到恶意用户的攻击从而导致模型训练的准确率降低。提出一种车联网中分层区块链使能的联邦学习信誉管理架构。首先介绍整个架构的组成以及具体的工作流程,然后设计智能合约为系统提供更加灵活可信的信誉意见共享环境,并开发一种轻量级的区块链共识算法,以提升区块链的运行效率。仿真结果表明所提方法能够筛选出恶意用户,同时保证数据隐私和安全,从而提高FL的准确性。