极限学习机是一种随机化算法,它随机生成单隐含层神经网络输入层连接权和隐含层偏置,用分析的方法确定输出层连接权。给定网络结构,用极限学习机重复训练网络,会得到不同的学习模型。本文提出了一种集成模型对数据进行分类的方法。首先用极限学习机算法重复训练若干个单隐含层前馈神经网络,然后用多数投票法集成训练好的神经网络,最后用集成模型对数据进行分类,并在10个数据集上和极限学习机及集成极限学习机进行了实验比较。实验结果表明,本文提出的方法优于极限学习机和集成极限学习机。