摘要
自动调制识别是空间认知通信系统的关键技术,有助于实现自适应信号解调。深度神经网络虽然具有特征提取能力强的优势,但也存在参数众多、计算量大的问题,难以实现空间在轨应用。针对以上问题,提出了一种轻量化、高性能的卷积神经网络结构。网络先提取信号的同相正交相关特征,再提取时域特征,最后提取各通道特征均值进行分类。对11种调制方式分类的实验结果表明:当信噪比高于0 dB时,平均识别准确率能达到86.94%,较传统的高阶累积量的方法提高了31.54%;与目前高识别准确率的深度神经网络模型相比,仅使用不到10%的模型参数,在树莓派4B上计算速度平均提高了20倍。
- 单位