摘要
目的探讨基于多种结构MRI特征构建的机器学习模型诊断帕金森病(PD)的价值。方法回顾性分析2017年11月至2019年8月在苏州大学附属第二医院神经内科就诊的60例PD患者(PD组)和同期招募的56名社区健康老年人(NC组)的临床及影像资料。首先对所有受试者进行全脑MR扫描, 然后基于不同的脑分区模板, 从小脑、深部核团和皮层提取多种结构MRI特征, 利用Mann-WhitneyU检验和最小绝对值收缩与选择算子回归筛选一组最具诊断鉴别力的特征, 最后运用逻辑回归(LR)和线性判别分析(LDA)两种分类器, 结合5折交叉验证策略分别构建小脑、深部核团、皮层和基于所有特征的综合模型。采用受试者操作特征曲线的曲线下面积(AUC)和决策曲线分析(DCA)评价各模型的诊断效能和临床净收益。结果最终筛选出4个小脑特征(Lobule Ⅵ体积非对称指数、Lobule ⅦB皮层厚度非对称指数、灰质体积非对称指数及右侧Lobule Ⅵ灰质体积)、3个深部核团(右侧伏隔核绝对体积、伏隔核绝对和相对体积)和3个皮层(左侧PFm局部脑回指数、右侧额上回局部分形维数和左侧枕上回沟深)特征为最具诊断鉴别力的特征, 并构建模型。验证集中, 基于LR分类器的小脑、深部核团、皮层和综合模型诊断PD的AUC值分别为0.692、0.641、0.747和0.816, 基于LDA分类器的小脑、深部核团、皮层和综合模型诊断PD的AUC值分别为0.726、0.610、0.752和0.818。基于LR和LDA分类器的综合模型诊断PD的效能均优于其他模型(P<0.05)。DCA曲线显示验证集中基于LR和LDA分类器下的综合模型临床净收益最高。结论基于LR和LDA分类器的小脑、深部核团、皮层特征的综合模型诊断PD具有良好的效能和临床净收益。
-
单位苏州大学附属第二医院; 神经内科