摘要

自然语言处理(NLP)旨在如何让计算机更好的理解人类的语言,但是在自然语言中句段、词汇本身存在多义和歧义,计算机无法将其转换为能识别的二进制编码,这是当下NLP领域内存在的最大问题。本文将Viterbi算法的词性标注模型、CBOW语言模型及K-Means聚类算法组合,构建一种基于词向量的多义词组合消歧模型(VCK-Vector)。通过词性分布对比、语义相关度任务和聚类效果分析等方法评测模型,最后通过百度AI词向量与模型输出结果进行对比。结果显示基于VCK-vector模型在实际场景运用中是可行的。