摘要

数据流环境下的高维、属性冗余、含噪音等问题是经常且可能同时存在的,在一定程度上影响了数据流的分类效果.为改善这一现状,提出一种快速、有效的数据流特征选择方法.引入统计指标IV(information value)值作为特征重要度的评价标准,在此基础上依据经验阈值来进行特征选择,从而解决了传统特征选择方法时空效率不高、区分度不明显、难以应用数据流的问题.实验结果表明:FS-IV具有较小的时间开销和较好的抗噪性能,该方法与已有的数据流分类模型相结合,在保证分类精度可比的情况下,能显著提高时空性能.