摘要

以我国某地区黑色金属加工及冶炼行业的212家中小企业为样本,先使用带行业影响修正的用电量增长率法标注样本,再利用K-means聚类算法和SMOTE过采样技术提取数据集特征和平衡训练集类别,最后采用经MetaCost元代价敏感算法改造后的梯度提升决策树模型进行企业生命周期阶段的识别建模和预测。构建的七项特征具有典型的长尾性质,表现在对模型的预测能力贡献上它们的重要度比较平均一致。经过代价矩阵调参,模型对失衡类别企业样本的最佳查准率和查全率分别为83.3%和88.9%。通过与传统方法结果的横向Kappa一致性检验和纵向实证分析,验证了基于单视角企业用电数据利用机器学习算法模型来识别企业生命周期阶段的可信性和有效性。

全文